Norm preserving extensions of linear transformations on Hilbert spaces.

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Norm Preserving Extensions of Linear Transformations on Hilbert Spaces

Introduction. Let 77 be a Hubert space and let D be a closed proper subspace of 77. Let 70 be a linear contraction on D to 77. The problem of characterizing the contractions on all of 77 which extend J0 is directly related to the extension problems for unbounded transformations posed and treated by M. G. Krein [2] and R. S. Phillips [3]. In §1 of this paper we establish the following solution o...

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

SOME PROPERTIES OF FUZZY HILBERT SPACES AND NORM OF OPERATORS

In the present paper we define the notion of fuzzy inner productand study the properties of the corresponding fuzzy norm. In particular, it isshown that the Cauchy-Schwarz inequality holds. Moreover, it is proved thatevery such fuzzy inner product space can be imbedded in a complete one andthat every subspace of a fuzzy Hilbert space has a complementary subspace.Finally, the notions of fuzzy bo...

متن کامل

On Zero-Preserving Linear Transformations

For an arbitrary subset I of IR and for a function f defined on I, the number of zeros of f on I will be denoted by ZI(f) . In this paper we attempt to characterize all linear transformations T taking a linear subspace W of C(I) into functions defined on J (I, J ⊆ IR) such that ZI(f) = ZJ (Tf) for all f ∈ W .

متن کامل

Determinant preserving transformations on symmetric matrix spaces

Let Sn(F) be the vector space of n × n symmetric matrices over a field F (with certain restrictions on cardinality and characteristic). The transformations φ on the space which satisfy one of the following conditions: 1. det(A+ λB) = det(φ(A) + λφ(B)) for all A,B ∈ Sn(F) and λ ∈ F; 2. φ is surjective and det(A+ λB) = det(φ(A) + λφ(B)) for all A,B and two specific λ; 3. φ is additive and preserv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1969

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1969-0238092-8